国家科技基础条件平台
  • 你好,请
  • 登录
  • logotext
    U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China implications for the initial rifting of Rodinia [查看] Xian-huaLiZheng-XiangLiHanwenZhouYingLiuPeterD.Kinny
    SHRIMP U–Pb zircon age, geochemical and Nd isotopic data are reported for the Neoproterozoic Suxiong volcanic rocks in the Kangdian Rift, western South China. These volcanic rocks are bimodal, consisting mainly of mildly alkaline basalts and trachydacites to rhyolites. SHRIMP U–Pb zircon age determination indicates that they were erupted at 803±12 Ma. Most basaltic rocks are characterized by high positiveεNd(T) values (+5 to +6),pronounced enrichment in Th, Ta, Nb, LREEs, Sr, P, Zr, Hf, Ti, smooth LREE-enriched patterns and generally‘humped’ trace element spidergrams. They resemble the alkali basalts of the Hawaiian oceanic island basalts (OIB) and the Ethiopian continental flood basalts (CFB). These features suggest that the basaltic rocks were most probably derived from an OIB-like mantle source without appreciable crustal/lithospheric contamination. Differentiated basalt and trachyandesite samples show relatively lowεNd(T) values (+1.7 to +2.4) and Nb-Ta depletion due to contamination by the mafic lithosphere and/or crustal materials. The rhyolite and dacite samples have small positiveεNd(T) values (+1.1 to +2.6), general enrichment in most incompatible trace elements (K, Rb, Th, Zr, Hf and REEs) but significant depletion in Nb, Ta, Sr, P, Eu and Ti. They share geochemical characters of A2-type granites, and are likely generated by shallow (P≤4 kbar) dehydration melting of hornblende-bearing granitoids. Geochemical and Nd isotopic characters and high-volcanicity of the Suxiong bimodal volcanic successions are consistent with their formation in a continental rift environment, such as the Ethiopian rift. The Kangdian Rift is considered as part of a wider continental rift system produced by a starting mantle plume beneath South China during the Neoproterozoic breakup of Rodinia.
    Grenvillian continental collision in south China New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia [查看] Zheng-XiangLiXian-huaLiHanwenZhouPeterD.Kinny
    Geochemical and Hf–Nd isotope data of Nanhua rift sedimentary and volcaniclastic rocks indicate a Neoproterozoic continental flood basalt provenance [查看] Xuan-CeWangZheng-XiangLiXian-HuaLiQiu-LiLiQi-RuiZhang
    A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China,Results of a ca.275 Ma mantle plume [查看] Chuan-LinZhangZheng-XiangLiXian-HuaLiYi-GangXuGangZhouHai-MinYe
    SHRIMP zircon U-Pb age constraints on Neoproterozoic Quruqtagh diamictites in NW China [查看] BeiXuaShuhaiXiaoHaiboZouYanChenZheng-XiangLiBiaoSongDunyiLiuChuanmingZhougXunlaiYuang
    The Neoproterozoic Quruqtagh Group in the Tarim Block, NW China, contains multiple diamictites in the Bayisi, Altungol, Tereeken, and Hankalchough formations. These diamictites may represent three or possibly four discrete glaciations, although evidence for a glacial origin of the Bayisi and Altungol diamictite is ambiguous. To constrain their age and duration, we dated three volcanic beds (V1, V2, and V3) in the Quruqtagh Group using the SHRIMP (sensitive high-resolution ion microprobe) zircon U–Pb method.Volcanic bed V1 near the base of the Bayisi diamictite yields a 740±7Ma age, volcanic bed V2 near the top of the Bayisi Formation gives a 725±10Ma age, and volcanic bed V3 between the Tereeken and Hankalchough diamictites yields a 615±6Ma age. V1 and V2 have overlapping ages, and together these dates suggest that the Bayisi diamictite was deposited at around 730 Ma. The Tereeken and Altungol diamictites were deposited between 725±10Ma and 615±6 Ma, and the Hankalchough diamictite between 615±6Ma and ∼542Ma (i.e., the Neoproterozoic–Cambrian transition). These dates and previously published chemostratigraphic data are consistent with (but doe not require) the correlation of the Tereeken and Hankalchough diamictites with the 635Ma Nantuo and 582Ma Gaskiers glaciations, respectively.However, the new dates are inconsistent with a single and globally synchronous Sturtian glaciation that occurred in the pre-Nantuo Neoproterozoic Era. Instead, currently available data necessitate that either multiple glaciations occurred, or a globally diachronous glacial event developed during a protracted period between ∼750Ma and ∼650 Ma.
    Amalgamation between the Yangtze and Cathaysia Blocks in South ChinaConstraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks [查看] Xian-HuaLiWu-XianLiZheng-XiangLiChing-HuaLoJianWangeMei-FangYeYue-HengYang
    South China was formed through the amalgamation of the Yangtze Block with the Cathaysia Block, but the timing of this amalgamation is controversial, ranging from Mesoproterozoic to Mesozoic. We report here SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu Group volcanic rocks from the southeastern Yangtze Block. These rocks were strongly deformed, metamorphosed to greenschist-facies, intruded by 849±7Ma dolerites, and unconformably overlain by Neoproterozoic rift successions of no older than ca. 820 Ma. The Beiwu and Zhangcun volcanic rocks from the middle and uppermost Shuangxiwu Group were dated at 926±15Ma and 891±12 Ma, respectively. All the studied rocks are characterized by highly positive Nd(T) (5.4–8.7) and Hf(T) (11.0–15.3) values. The Pingshui basaltic and andesitic rocks from the lower Shuangxiwu Group, whichwere previously dated at ca. 970 Ma, are high in Al2O3 (15–20%) but low in MgO (<8%), and are characterized by enrichments in Th and LREE but depletions in Nb, Ta, Zr, Hf and Ti, broadly similar to high-Al basaltic rocks in many volcanic arcs. The Beiwu andesitic to rhyolitic rocks have higherMgOthan the experimental melts of basaltic rocks, and their Al2O3 content decreases with increasing SiO2, similar to the regional coeval tonalites and granodiorites,suggesting their formation by crystal fractionation of basaltic parent magma. The Zhangcun volcanic rocks are high in SiO2 (mostly >69%), low in MgO (0.35–1.2%), and have nearly constant Al2O3 contents of 14–15%and relatively uniform trace element concentrations. Theywere generatedby remelting of juvenile mafic to intermediate arc rocks. Overall, the Shuangxiwu Group volcanic rocks and associated intrusive tonalites and granodiorites constitute a typical calc-alkaline magmatic assemblage of a 970–890Maactive continental margin. These results and the 849±7Ma zircon U–Pb age for the undeformed doleritic dikes intruding the Shuangxiwu Group suggest that the tectonic regime of the study region transformed from plate convergence to intracontinental rifting in the time period between ca. 890Ma and ca. 850 Ma.Previously reported 1.04–0.94Ga metamorphic and deformation ages from the nearby Tianli Schists and evidence for the final closure of the back-arc basin at ca. 880Ma (ophilitic obduction at Xiwan), further suggest that the amalgamation between the Yangtze and Cathaysia Blocks, likely through “soft docking”at the eastern segment of the Sibao orogen, was completed at ca. 880Ma or soon after.
    The oldest known rocks in south-western China SHRIMP U-Pb magmatic crystallisation age and detrital provenance [查看] MatthewR.GreentreeZheng-XiangLi
    SHRIMP zircon U-Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block [查看] Mei-FangYeXian-HuaLiWu-XianLiYingLiuZheng-XiangLi
    Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia New mica 40Ar39Ar dating andSHRIMP U–Pb detrital zircon provenance constraints [查看] Zheng-XiangLiJo-AnneWarthoSandraOcchipintiChuan-LinZhangXian-HuaLiJianWangChaominBao
    The Sibao Orogen in South China is one of the poorest known Grenville-aged orogenic belts through which the Neoproterozoic supercontinent Rodinia assembled. We report here the first UV laser spot 40Ar/39Ar mica and SHRIMP U–Pb zircon ages from a rare Grenville-aged metamorphic complex, the Tianli Schists, in the eastern Sibao Orogen. Our U–Pb zircon provenance ages indicate that the protolith of the Tianli Schists was a clastic sedimentary succession most likely derived from the Yangtze Block.The depositional age of the protolith is younger than 1530 Ma, as constrained by the youngest detrital zircon grains, but is older than 1040 Ma as constrained by the oldest 40Ar/39Ar muscovite ages. The Yangtze Block provenance for the Tianli Schists suggests that the Sibaoan ophiolitic complexes in northeastern Jiangxi, the ca. 970 Ma Xiwan adakitic granite intrusions, and the ca. 900 Ma(?) Xiwan blueschists, all to the northwest of the study region, were likely formed during the closure of a back-arc basin along the margin of the Yangtze Block. Our in situ UV laser 40Ar/39Ar results from S1 and S2 muscovites suggest that the Tianli Schists underwent metamorphism and deformation at 1042±7Ma to 1015±4 Ma, the oldest known metamorphic event in the easternSibao Orogen. Muscovite/biotite cooling ages of ca. 968±4 and 942±8Ma are recorded by deformed and recrystallised muscovite and biotite, respectively, indicating tectonic reactivation before 900 Ma, during the later stages of the Sibao Orogeny. Together with previous results from the western Sibao Orogen, our work suggests that the closure of the ocean between the Yangtze and Cathaysia Blocks during the assembly of Rodinia was diachronous: ≥1000 Ma at the western Sibao Orogen and ca. 900 Ma at the eastern Sibao Orogen.
    © BJSHRIMP 2013 - bjshrimp.cn