你好,请
登录
首页
平台概况
新闻中心
中心新闻
行业新闻
媒体关注
平台资源
资源列表
平台服务
机时安排 A
机时安排 B
投诉建议
服务成效
服务成效
服务案例
下载中心
中心发布
调试工具
运行环境
关于
联系我们
发展历程
BJSHRIMP
平台组建背景
搜索
返回
Thermochronology of the PoSen complex, northern Vietnam Implications for tectonic evolution in SE Asia
[
查看
]
Pei-LingWang
、
Ching-HuaLo
、
Ching-YingLan
、
Sun-LinChung
、
Tung-YiLee
、
TranNgocNam
、
YujiSano
The PoSen complex, located closely adjacent to the southwestern margin of the Red River shear zone represents the uplifted basement of north Vietnam and may record the motion of the shear zone. However,its thermochronological history has not been fully examined yet. Here we applied U–Pb and 40Ar/39Ar dating methods to reveal its thermochronological history. U–Pb analysis of composite zircon grains by TIMS yielded an average age of 760 ± 25 Ma, clustering on the concordia line. Twelve SHRIMP U–Pb analyses also yielded a consistent result of 751 ± 7 Ma. Along with the geochemical features, the U–Pb dating results suggest the PoSen complex was a late Proterozoic magmatic complex, which could correspond to the Chengjiang orogeny, a widespread thermal event in southwest China. Results of 40Ar/39Ar dating of micas and K-feldspars were in the range of 36–30 Ma, revealing a rapid cooling and exhumation history of the PoSen complex during the late Paleogene. The time span of cooling and exhumation of the PoSen complex is slightly older than the main cooling phases of the Ailao Shan–Red River (ASRR) metamorphic massifs (28–17 Ma), but is synchronous with the early igneous activity stage in the eastern Indo-Asian collision zone of southeast China and north Vietnam. Owing to the ongoing debate about the initiation and offset of the ASRR shear zone, the tectonic force for the late Paleogene cooling of the PoSen complex is still inconclusive. The rapid exhumation of the PoSen complex could be in response to either the detachment of the Neo-Tethyan slab or a transpressional phase of continental subduction along the ASRR shear system in the eastern Indo-Asian collision zone.
Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet
[
查看
]
Da-RenWen
、
DunyiLiu
、
Sun-LinChung
、
Mei-FeiChu
、
JianqingJi
、
QiZhang
、
BiaoSong
、
Tung-YiLee
、
Meng-WangYeh
、
Ching-HuaLo
The Trans-Himalayan magmatism, which occurred extensively in the Lhasa terrane of southern Tibet, has long been related to the Neotethyan subduction before the India–Asia collision. To better delineate the magmatic duration, we report a geochronological study with 25 SHRIMP zircon U–Pb ages from the Gangdese Batholith that represents the largest Trans-Himalayan plutonic complex. The results suggest two distinct stages of plutonism in the Late Cretaceous (ca. 103–80 Ma) and early Paleogene (ca. 65–46 Ma),respectively. Our new data confirm if not refine the notion that a Gangdese magmatic gap or quiescent period existed between ca. 80 and 70 Ma. It is furthermore identified that the early stage ended with adakitic intrusion and the latter stage is marked by a peak activity at ca. 50 Ma.We attribute the cessation of the early stage, and following magmatic gap, to a flattening of the northward Neotethyan subduction, and the initiation of the latter stage to rollback of the subducted slab. The proposed scenarios can also account for the southward migration and intensification of Cretaceous to Paleogene volcanism in the Lhasa terrane that demonstrates a coeval, eruptive “flare-up” event around 50 Ma, interpreted as the result of detaching the Neotethyan oceanic slab from the adherent, more buoyant Indian continental lithosphere owing to the India–Asia collision. Our model is, moreover, in general accord with sedimentary and structural geologic records from southern Tibet where subduction-related orogenesis appears to have evolved through time before India started colliding Asia.
© BJSHRIMP 2013 - bjshrimp.cn